METHOD #: 340.3 Approved for NPDES (Issued 1971)

TITLE: Fluoride (Colorimetric, Automated Complexone)

ANALYTE: CAS # F Fluoride 7782-41-4

**INSTRUMENTATION:** Autoanalyzer

STORET No. Total 00951

Dissolved 00950

## 1.0 Scope and Application

- 1.1 This method is applicable to drinking, surface and saline waters, domestic and industrial wastes. The applicable range of the method is 0.05 to 1.5 mg F/L. Twelve samples per hour can be analyzed.
- 1.2 For Total or Total Dissolved Fluoride, the Bellack Distillation must be performed on the samples prior to analysis by the complexone method.

# 2.0 Summary of Method

2.1 Fluoride ion reacts with the red cerous chelate of alizarin complexone. It is unlike other fluoride procedures in that a positive color is developed as contrasted to a bleaching action in previous methods.

# 3.0 Sample Handling and Preservation

3.1 No special requirements.

#### 4.0 Interferences

4.1 Method is free from most anionic and cationic interferences, except aluminum, which forms an extremely stable fluoro compound,  $AlF_6^{-3}$ . This is overcome by treatment with 8-hydroxyquinoline to complex the aluminum and by subsequent extraction with chloroform. At aluminum levels below 0.2 mg/L, the extraction procedure is not required.

#### 5.0 Apparatus

- 5.1 Technicon AutoAnalyzer Unit consisting of:
  - 5.1.1 Sampler I.
  - 5.1.2 Manifold.
  - 5.1.3 Proportioning pump.
  - 5.1.4 Continuous filter.
  - 5.1.5 Colorimeter equipped with 15 mm tubular flow cell and 650 filters.
  - 5.1.6 Recorder equipped with range expander.

### 6.0 Reagents

- 6.1 Sodium acetate solution: Dissolve 272 g (2 moles) of sodium acetate in distilled water and dilute to 1 liter.
- 6.2 Acetic acid-8-hydroxyquinoline solution: Dissolve 6 g of 8-hydroxyquinoline in 34 mL of conc. acetic acid, and dilute to 1 liter with distilled water.
- 6.3 Chloroform: Analytical reagent grade.
- 6.4 Ammonium acetate solution (6.7%): Dissolve 67 g of ammonium acetate in distilled water and dilute to 1 liter.
- 6.5 Hydrochloric acid (2 N): Dilute 172 mL of conc. HCl to 1 liter
- 6.6 Lanthanum alizarin fluoride blue solution<sup>(1)</sup>: Dissolve 0.18 g of alizarin fluoride blue in a solution containing 0.5 mL of conc. ammonium hydroxide and 15 mL of 6.7% ammonium acetate (6.4). Add a solution that contains 41 g of anhydrous sodium carbonate and 70 mL of glacial acetic acid in 300 mL of distilled water. Add 250 mL of acetone. Dissolve 0.2 g of lanthanum oxide in 12.5 mL of 2 N hydrochloric acid (6.5) and mix with above solution. Dilute to 1 liter.
- 6.7 Stock solution: Dissolve 2.210 g of sodium fluoride in 100 mL of distilled water and dilute to 1 liter in a volumetric flask. 1.0 mL = 1.0 mg F.
- 6.8 Standard Solution: Dilute 10.0 mL of stock solution to 1 liter in a volumetric flask. 1.0 mL = 0.01 mg F.
  - 6.8.1 Using standard solution, prepare the following standards in 100 mL volumetric flask:

| mg F/L | mL Standard Solution/100 mL |
|--------|-----------------------------|
| 0.05   | 0.5                         |
| 0.10   | 1.0                         |
| 0.20   | 2.0                         |
| 0.40   | 4.0                         |
| 0.60   | 6.0                         |
| 0.80   | 8.0                         |
| 1.00   | 10.0                        |
| 1.20   | 12.0                        |
| 1.50   | 15.0                        |

### 7.0 Procedure

- 7.1 Set up manifold as shown in Figure 1.
- 7.2 Allow both colorimeter and recorder to warm up for 30 minutes. Run a baseline with all reagents, feeding distilled water through the sample line. Adjust dark current and operative opening on colorimeter to obtain stable baseline.
- 7.3 Place distilled water wash tubes in alternate openings in Sampler and set sample timing at 2.5 minutes.
- 7.4 Arrange fluoride standards in Sampler in order of decreasing concentration. Complete loading of Sampler tray with unknown samples.
- 7.5 Switch sample line from distilled water to Sampler and begin analysis.

#### 8.0 Calculation

8.1 Prepare standard curve by plotting peak heights of processed fluoride standards against concentration values. Compute concentration of samples by comparing sample peak heights with standard curve.

# 9.0 Precision and Accuracy

- 9.1 In a single laboratory (EMSL), using surface water samples at concentrations of 0.06, 0.15, and 1.08 mg F/L, the standard deviation was  $\pm$  0.018.
- 9.2 In a single laboratory (EMSL), using surface water samples at concentrations of 0.14 and 1.25 mg F/L, recoveries were 89% and 102%, respectively.

# **Bibliography**

- 1. J.T. Baker Laboratory Chemical No. J 112 or equivalent.
- 2. Greenhaigh, R., and Riley, J. P., "The Determination of Fluorides in Natural Waters, with Particular Reference to Sea Water". Anal. Chim. Acta, 25, 179 (1961).
- 3. Chan, K. M., and Riley, J. P., "The Automatic Determination of Fluoride in Sea Water and Other Natural Water". Anal. Chim. Acta, 35, 365 (1966).
- 4. Standard Methods for the Examination of Water and Wastewater, 14th Edition, p 614, Method 603, (1975).

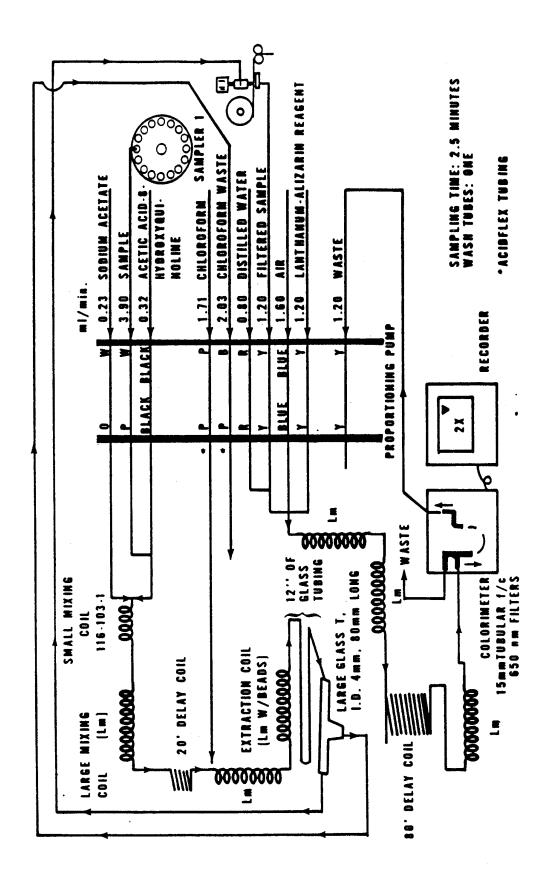



FIGURE 1. FLUORIDE MANIFOLD AA-I